Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Curr Opin Lipidol ; 32(4): 231-243, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1266229

ABSTRACT

PURPOSE OF REVIEW: Coronavirus Disease 2019 (COVID19) has caused significant global morbidity and mortality, especially in persons with underlying cardiovascular disease. There have been concerns that lipid-lowering therapy (LLT) increases angiotensin-converting enzyme 2 levels. Conversely, pleiotropic effects of statins can theoretically protect against severe COVID19 infection, supporting evidence from other respiratory illnesses in which statin use probably confers benefit. RECENT FINDINGS: There is an abundance of studies that show that statins are safe and potentially protect against severe COVID19 infection (critical illness and death), even when adjustment for potential confounders is undertaken. However, the evidence is limited to retrospective cohorts. The benefit for patients with diabetes is less clear. There is a paucity of evidence for other LLT agents. Available clinical guidelines recommend the ongoing use of LLT in patients with COVID19 (unless specifically contra-indicated) and the data from available studies support these. SUMMARY: In patients with COVID19 infection, LLT should be continued. However, the current findings need substantiating in larger prospective clinical studies with specific examination of the possible mechanisms by which LLT confers benefit from COVID19.


Subject(s)
Atherosclerosis/drug therapy , COVID-19 Drug Treatment , Cardiovascular Diseases/drug therapy , Dyslipidemias/drug therapy , Atherosclerosis/complications , Atherosclerosis/epidemiology , Atherosclerosis/virology , COVID-19/complications , COVID-19/epidemiology , COVID-19/virology , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/virology , Cholesterol, LDL/drug effects , Dyslipidemias/complications , Dyslipidemias/epidemiology , Dyslipidemias/virology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypolipidemic Agents/therapeutic use , SARS-CoV-2/pathogenicity
2.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: covidwho-1256566

ABSTRACT

Cells convey information among one another. One instrument employed to transmit data and constituents to specific (target) cells is extracellular vesicles (EVs). They originate from a variety of cells (endothelial, immune cells, platelets, mesenchymal stromal cells, etc.), and consequently, their surface characteristics and cargo vary according to the paternal cell. The cargo could be DNA, mRNA, microRNA, receptors, metabolites, cytoplasmic proteins, or pathological molecules, as a function of which EVs exert different effects upon endocytosis in recipient cells. Recently, EVs have become important participants in a variety of pathologies, including atherogenesis and coronavirus disease 2019 (COVID-19)-associated thrombosis. Herein, we summarize recent advances and some of our own results on the role of EVs in atherosclerotic cardiovascular diseases, and discuss their potential to function as signaling mediators, biomarkers and therapeutic agents. Since COVID-19 patients have a high rate of thrombotic events, a special section of the review is dedicated to the mechanism of thrombosis and the possible therapeutic potential of EVs in COVID-19-related thrombosis. Yet, EV mechanisms and their role in the transfer of information between cells in normal and pathological conditions remain to be explored.


Subject(s)
Atherosclerosis/metabolism , COVID-19/metabolism , Extracellular Vesicles/metabolism , Thrombosis/metabolism , Atherosclerosis/physiopathology , Atherosclerosis/therapy , Atherosclerosis/virology , Biomarkers/metabolism , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Endothelial Cells/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/virology , Mesenchymal Stem Cells/metabolism , Signal Transduction/immunology , Thrombosis/complications , Thrombosis/physiopathology , Thrombosis/virology
3.
J Neurovirol ; 27(1): 35-51, 2021 02.
Article in English | MEDLINE | ID: covidwho-1061059

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19) in 2019, it is gaining worldwide attention at the moment. Apart from respiratory manifestations, neurological dysfunction in COVID-19 patients, especially the occurrence of cerebrovascular diseases (CVD), has been intensively investigated. In this review, the effects of COVID-19 infection on CVD were summarized as follows: (I) angiotensin-converting enzyme 2 (ACE2) may be involved in the attack on vascular endothelial cells by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to endothelial damage and increased subintimal inflammation, which are followed by hemorrhage or thrombosis; (II) SARS-CoV-2 could alter the expression/activity of ACE2, consequently resulting in the disruption of renin-angiotensin system which is associated with the occurrence and progression of atherosclerosis; (III) upregulation of neutrophil extracellular traps has been detected in COVID-19 patients, which is closely associated with immunothrombosis; (IV) the inflammatory cascade induced by SARS-CoV-2 often leads to hypercoagulability and promotes the formation and progress of atherosclerosis; (V) antiphospholipid antibodies are also detected in plasma of some severe cases, which aggravate the thrombosis through the formation of immune complexes; (VI) hyperglycemia in COVID-19 patients may trigger CVD by increasing oxidative stress and blood viscosity; (VII) the COVID-19 outbreak is a global emergency and causes psychological stress, which could be a potential risk factor of CVD as coagulation, and fibrinolysis may be affected. In this review, we aimed to further our understanding of CVD-associated COVID-19 infection, which could improve the therapeutic outcomes of patients. Personalized treatments should be offered to COVID-19 patients at greater risk for stroke in future clinical practice.


Subject(s)
Atherosclerosis/complications , COVID-19/complications , Disseminated Intravascular Coagulation/complications , Hemorrhage/complications , Hyperglycemia/complications , Stroke/complications , Thrombosis/complications , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , Atherosclerosis/diagnosis , Atherosclerosis/drug therapy , Atherosclerosis/virology , COVID-19/diagnosis , COVID-19/virology , Cardiovascular Agents/therapeutic use , Disseminated Intravascular Coagulation/diagnosis , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/virology , Extracellular Traps/drug effects , Extracellular Traps/immunology , Hemorrhage/diagnosis , Hemorrhage/drug therapy , Hemorrhage/virology , Humans , Hyperglycemia/diagnosis , Hyperglycemia/drug therapy , Hyperglycemia/virology , Inflammation , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Stroke/diagnosis , Stroke/drug therapy , Stroke/virology , Thrombosis/diagnosis , Thrombosis/drug therapy , Thrombosis/virology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL